Усеченное среднее


Определение усеченного среднего

Усеченное среднее — это метод нахождения более реалистичного среднего значения путем избавления от некоторых ошибочных наблюдений. В соответствии с этим методом процент самых высоких и самых низких значений вырезается из обоих крайних значений перед вычислением среднего значения. Это исключение перед вычислением приводит к более надежному среднему значению.

Закажи песню-подарок. Платите только если вы довольны.

Ключевые выводы

  • Усеченное среднее — это статистическая мера, которая избавляет от процента наблюдений из заданного списка перед выполнением вычислений среднего. Искоренение значений происходит с нижнего и верхнего конца данного набора наблюдений.
  • Его также называют усеченным средним, он обеспечивает более надежное среднее статистическое значение за счет уменьшения стандартных ошибок. Другими словами, это мера дисперсии среднего значения выборки, относящаяся к среднему значению генеральной совокупности, а не стандартное отклонение. Читать далее, вызванное выбросами или экстремальными вариациями.
  • Усеченное среднее применяется для определения уровня инфляции, результатов Олимпийских игр и экономических данных, которые требуют незначительных колебаний.
  • Наименьшая обрезка составляет 0%, то же самое, что и среднее арифметическое.

Оглавление

Объяснение усеченного среднего

Усеченное среднее

Программы для Windows, мобильные приложения, игры - ВСЁ БЕСПЛАТНО, в нашем закрытом телеграмм канале - Подписывайтесь:)

Усеченное среднее — это усеченный сегмент среднего арифметического. Среднее арифметическое Среднее арифметическое обозначает среднее значение всех наблюдений ряда данных. Это совокупность всех значений в наборе данных, деленная на общее количество наблюдений. Подробнее используется в статистике. Поэтому его также называют усеченным средним. Процент сокращается с обоих концов ряда наблюдений, исключая самые высокие и самые низкие значения. В этом ряду наблюдения располагаются в порядке возрастания. Существует три обычно применяемых процента обрезки, т. е. 5%, 10% и 20%.

Усеченное среднее широко применяется для уменьшения колебаний выборки. На Олимпийских играх с помощью этого метода избегают доминирования крайних точек данных. При расчете темпов инфляции усеченное среднее помогает исключить резкие изменения цен. Резервный банк Австралиикак и многие центральные банки, использует усеченные средние значения для определения темпов инфляции.

Обоснование усеченного среднего заключается в том, что иногда происходят существенные изменения цен на определенные товары, которые существенно влияют на обычное среднее всех изменений цен. Иногда комплексное среднее значение совершенно не отражает изменения цен на другие товары и услуги. Обрезка приходит на помощь в таких случаях, чтобы получить более реалистичное значение. Ниже приведены характеристики определенных процентов усеченного среднего.

#1 – 5% усеченного среднего

Общее 5% усеченное среднее обычно эффективно в случае обширных данных. 2,5% наблюдений исключены из нижнего и верхнего концов. Следовательно, 95% наблюдений в серии остаются нетронутыми. Усеченное на 5 % значение self будет отражать применение отдельной обрезки на 5 % для самых низких и самых высоких значений. Следуя этой логике, важно понимать, что при подстройке 0% не будут исключаться какие-либо значения, и будет выполняться среднее значение с учетом каждого наблюдения. Таким образом, получится среднее арифметическое.

# 2 – 10% усеченного среднего

В общей сложности 10% усеченного среднего используется очень часто. На Олимпийских играх этот метод часто используется для устранения традиционных смещений средних значений, вызванных экстремальными значениями. Таким образом, 5% наименьшего и наибольшего значений удаляются перед вычислением среднего значения с каждого конца. Следовательно, 90% наблюдений в серии остаются нетронутыми.

#3 – 20% усеченного среднего

Усечение на 20% аналогично другим процентам обрезки. Здесь 10% значений удаляются с обоих концов. Следовательно, остаток используется для расчета 20% усеченного среднего. Кроме того, сокращение на 5, 10 или 20 процентов от предлагаемого конца списка потребует выполнения расчета только для данной части. Следовательно, усечение на 10% для самого высокого значения потребует только удаления наблюдений из более высокого конца.

Формула усеченного среднего

Следующие шаги включаются в формулу усеченного среднего:

  1. Пройдите процент обрезки. Это может быть 10%, 20%, 30% и т.
  2. Умножьте процент на количество наблюдений, чтобы получить количество значений, вычтенных из каждого конца.
  3. Удалите самые высокие и самые низкие числа с обоих концов.
  4. Сократите общее количество наблюдений, вычитая количество наблюдений, которые были вырезаны.
  5. Применить стандартное среднее или формулу среднего. Формула среднего. Среднее значение — это значение, которое используется для представления набора значений данных, как среднее значение, рассчитанное из всех данных, и эта формула рассчитывается путем сложения всех значений заданного набора, обозначаемого суммированием X и разделив его на количество значений, заданных в наборе, обозначенном N. подробнее к остальным наблюдениям, который выглядит следующим образом: Сумма наблюдений/количество наблюдений
  6. После применения формулы среднего можно было бы получить усеченное среднее.

Пример усеченного среднего с пошаговым расчетом

В следующей числовой задаче показано ручное применение концепции усеченного среднего и пошаговые вычисления.

Проблема:

Толкатель ядра записывает следующие результаты: 16,8 м, 16,9 м, 17,1 м, 17,2 м, 17,8 м, 17,9 м, 18,2 м, 18,3 м, 18,3 м, 18,5 м. Найдите 10% усеченное среднее.

Решение:

Ниже приведен процесс вычисления усеченного среднего:

Шаг 1 Подсчитайте количество наблюдений, т.е.

Количество наблюдений = 10

Шаг 2 Расположите ряды наблюдений в порядке возрастания, т. е. от наименьшего значения к наибольшему.

Баллы расположены в порядке возрастания:

16,8 м, 16,9 м, 17,1 м, 17,2 м, 17,8 м, 17,9 м, 18,2 м, 18,3 м, 18,3 м, 18,5 м

Шаг 3 Вычислите процент сокращения на каждом конце серии наблюдений.

Процент = 10%

Количество наблюдений, которые нужно обрезать с обоих концов = 10% * 10 = 1

Таким образом, нам нужно удалить два числа из набора наблюдений.

Шаг № 4 – Удалим наибольшее и наименьшее число с обоих концов. Это дает нам

16,9 м, 17,1 м, 17,2 м, 17,8 м, 17,9 м, 18,2 м, 18,3 м, 18,3 м,

Шаг № 5 Применим стандартную формулу среднего или среднего для расчета среднего из оставшихся восьми значений.

16,9, 17,1, 17,2, 17,8, 17,9, 18,2, 18,3, 18,3/8

Усеченное среднее = 17,71

Для реальных приложений определение процента сокращения имеет решающее значение. Опыт, знания и практика помогают пользователям выбрать подходящий процент, который нужно вырезать из среднего арифметического. Этот процент варьируется в зависимости от ситуации, проблемы и ниши, где он применяется.

Часто задаваемые вопросы (FAQ)

Что такое 10% обрезки означает?

10% усеченное среднее значение является центральной мерой тенденции в статистике. Таким образом, мы будем обрезать 10% наблюдений с обоих концов. Предположим, что всего имеется 10 наблюдений. Обрезка на 10% будет равна 10% x 10 = 1. Мы удалим самое высокое и самое низкое значение с обоих концов. После этого мы вычисляем среднее значение оставшихся 8 значений. На Олимпийских играх этот метод часто используется для устранения традиционных смещений средних значений, вызванных экстремальными значениями.

В чем смысл усеченного среднего?

Усеченное среднее — это метод нахождения более надежного среднего, чтобы оно было ближе к фактическому результату, путем обрезки процента наблюдений по обоим крайним значениям. Это сокращение самых высоких и самых низких значений приводит к более надежному среднему значению за счет избавления от выбросов.

Как найти усеченное среднее?

Усеченное среднее может быть найдено путем вычисления среднего арифметического после сокращения процента наблюдений от обоих крайних значений. Затем к оставшимся наблюдениям мы применяем формулу стандартного среднего.

Это было руководство по усеченному среднему и его статистическому определению. Здесь мы обсуждаем пример с пошаговым расчетом вместе с формулой. Вы можете узнать больше о финансировании из следующих статей –

  • Среднее геометрическое
  • Формула гармонического среднего
  • Формула средней численности населения
  • Формула взвешенного среднего

Программы для Windows, мобильные приложения, игры - ВСЁ БЕСПЛАТНО, в нашем закрытом телеграмм канале - Подписывайтесь:)

Похожие записи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *